The Boltzmann-Sinai Ergodic Hypothesis for Hard Ball Systems
نویسندگان
چکیده
We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . ,mN moving uniformly in the flat unit torus T , ν ≥ 3. It is proved here that the arising billiard flow possesses the K-mixing property for almost every distribution of the masses m1, . . . ,mN .
منابع مشابه
The Boltzmann-Sinai ergodic hypothesis in two dimensions (without exceptional models
We consider the system of N (≥ 2) elastically colliding hard balls of masses m1, . . . , mN and radius r in the flat unit torus T , ν ≥ 2. In the case ν = 2 we prove (the full hyperbolicity and) the ergodicity of such systems for every selection (m1, . . . , mN ; r) of the external geometric parameters, without exceptional values. In higher dimensions, for hard ball systems in T (ν ≥ 3), we pro...
متن کاملThe Boltzmann - Sinai Ergodic Hypothesis in Full Generality ( Without Exceptional Models )
We consider the system of N (≥ 2) elastically colliding hard balls of masses m1, . . . , mN and radius r on the flat unit torus T , ν ≥ 2. We prove the so called Boltzmann-Sinai Ergodic Hypothesis, i. e. the full hyperbolicity and ergodicity of such systems for every selection (m1, . . . , mN ; r) of the external geometric parameters, without exceptional values. Primary subject classification: ...
متن کاملProof of the Boltzmann-sinai Ergodic Hypothesis for Typical Hard Disk Systems
We consider the system of N (≥ 2) hard disks of masses m1, . . . , mN and radius r in the flat unit torus T. We prove the ergodicity (actually, the B-mixing property) of such systems for almost every selection (m1, . . . , mN ; r) of the outer geometric parameters. Primary subject classification: 37D50 Secondary subject classification: 34D05
متن کاملFurther Developments of Sinai’s Ideas: the Boltzmann-sinai Hypothesis
0.1. Preface. In 1963 Ya. G. Sinai [Sin(1963)] formulated a modern version of Boltzmann’s ergodic hypothesis, what we now call the “Boltzmann-Sinai Ergodic Hypothesis”: The billiard system of N (N ≥ 2) hard balls of unit mass moving on the flat torus T = R/Z (ν ≥ 2) is ergodic after we make the standard reductions by fixing the values of trivial invariant quantities. It took fifty years and the...
متن کاملConditional Proof of the Boltzmann-sinai Ergodic Hypothesis (assuming the Hyperbolicity of Typical Singular Orbits)
We consider the system of N (≥ 2) elastically colliding hard balls of masses m1, . . . , mN and radius r on the flat unit torus T , ν ≥ 2. We prove the so called Boltzmann-Sinai Ergodic Hypothesis, i. e. the full hyperbolicity and ergodicity of such systems for every selection (m1, . . . , mN ; r) of the external geometric parameters, under the assumption that almost every singular trajectory i...
متن کامل